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Abstract—A stress-function-based variational method developed in a previous work is extended
and modified into a sublaminate/layer approach applicable to a laminated strip composed of a large
number of differently orientated, anisotropic elastic plies. Lekhnitskii’s stress functions are used for
two interior layers adjacent to a particular interface. The remaining layers are grouped into an
upper sublaminate and a lower sublaminate. The stress functions are expanded in truncated power
series of the thickness coordinate and the differential equations governing the coefficient functions
are derived by using the complementary virtual work principle. The new approach limits the
dimension of the eigenvalue problem to a fixed number irrespective of the number of layers in the
sublaminates, so that reasonably accurate solutions of the interlaminar stresses can be computed
with extreme ease. For symmetric, four-layer, angle-ply and cross-ply laminates, a comparison of
the previous analysis results based on the pure layer model and new results based on two different
sublaminate/layer models indicates reasonable overall agreement in the interlaminar stresses and
superior agreement in the resultant peeling and shearing forces across end segments of the interface.
Additional results are obtained for eight-layer, quasi-isotropic laminates under the strain loads of
axial extension, bending and twisting.

1. INTRODUCTION

In a previous work (Yin, 1991), a stress-based variational method was developed for
determining the interlaminar stresses in a multi-layered strip with two parallel free edges,
x = +a, when the strip is subjected to an extensional strain ¢, parallel to the free edges, a
bending curvature k., or a twisting deformation k,, [see Pagano and Soni (1989) for selected
references to the large body of previous analytical and computational works on the problem,
mostly for the case of an axial strain load]. In an interior segment of the strip away from
the two end regions, the stresses in each anisotropic layer are independent of the axial
coordinate z. Consequently, the displacement functions in each layer correspond to a
generalized plane deformation (Lekhnitskii, 1963), and the stresses in the layer may be
expressed as the derivatives of a pair of Lekhnitskii’s stress functions F(x, y) and ¥(x, y).
Using polynomial expansions of the stress functions with respect to the thickness coordinate
», and the continuity conditions of the interlaminar stresses across the layer interfaces,
variational equations associated with the principle of stationary complementary energy
may be derived for a set of functions {X;(x)}, which are the values of the stress functions
and their y-derivatives on the interfaces. These variational (Euler—Lagrange) equations are
ordinary differential equations with constant coefficients. Together with the homogeneous
boundary conditions for X; at the free edges x = +a, the equations define an eigenvalue
problem whose solutions determine the stress functions (and hence also the stresses) in all
layers of the laminated strip.

An important feature of the stress-function-based variational method is that the
admissible stress fields satisfy exactly the equilibrium equations in each layer, including the
corner regions surrounding the intersection of a free edge with an interface, where the
stresses and the stress gradients may be exceedingly large. Furthermore, boundary and
interface continuity conditions are imposed upon the stress functions in such a way that

T A preliminary version of this paper (Yin, 1992a) was presented in the ATA4/ASME|ASCE[/AHS/ASC 33rd
SDM Conference, April, 1992, Dalias, Texas.
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the admissible stress fields also satisfy exactly the traction boundary conditions and the
continuity of interlaminar stresses along entire interfaces, including the end segments with
severe stresses. These properties of the admissible stress fields contribute to the overall
superior accuracy of the resulting stress solution (selected from the class of admissible
stress fields by the stationary complementary work principle) compared to the stress field
calculated from the displacement solution of a displacement-based variational analysis. The
complementary virtual work principle, which yields the system of differential equations for
the functions X;and certain natural conditions along the interfaces, ensures the compatibility
of strain and the interfacial continuity of tangential displacements in an averaged sense.

In principle, the stress-function-based variational method is applicable to a laminated
strip composed of unidirectional homogeneous layers with arbitrary anisotropic elastic
properties and orientation angles. Furthermore, the accuracy of the resulting solution
for the interlaminar stresses may be improved by using higher-degree polynomials to
approximate the stress functions in each layer (Yin, 1992b). This increases the number of
undetermined functions in the set {X,} and, consequently, raises the dimension of the
eigenvalue problem. The latter also increases with the total number of layers in the laminate.

Laminates used in aerospace applications are often composed of a relatively large
number of thin layers. If the layers are thin, a cubic polynomial expansion of the stress
function F and a quadratic expansion of ¥ (as used in Yin, 1991), may yield sufficiently
accurate overall patterns of the interlaminar stresses. However, with a large number of
layers, the size of the eigenvalue problem may become too great so that accurate com-
putation of all eigenvalues and eigenfunctions is unduly laborious. The principal advantage
of the present method, its ability to yield accurate interlaminar stresses through efficient
numerical computation, may then be lost.

In the present paper, a modified analysis method based on a sublaminate/layer model
is developed. The model is composed of two interior layers adjacent to a particular interface
on which the interlaminar stresses are to be determined, and two sublaminates above
and beneath these two layers. The layers are considered as homogeneous anisotropic or
orthotropic elastic media, while the sublaminates are considered as anisotropic laminates.
It should be mentioned that the existence and nature of the stress singularity at the
intersection of an interface with a free edge is determined essentially by the mismatch of
the elastic moduli of the two layers adjacent to the interface. Consequently, the anisotropic
elastic properties of the two layers are of fundamental importance to the local stress field,
and these properties should be properly included in any analytical model intended for an
accurate prediction of the interlaminar stresses. The remaining layers in the laminate, which
are not adjacent to the interface, produce indirect effects that may be evaluated by an
approximate analysis in which the layers are grouped into two sublaminates.

In order to obtain a purely stress formulation for the sublaminate/layer model, one
must express all kinematical variables of the sublaminates in terms of the stress functions
in the two interior layers. This task is achieved in the next section. First, the stiffness
matrices of the sublaminate are used to express the kinematical variables in terms of the
stress and moment resultants in the sublaminate. Then the equilibrium equations of the
sublaminate are integrated to obtain the stress and moment resultants in terms of the values
of the layer stress functions and their normal derivatives on the sublaminate/layer interface.
These two sets of relations are subsequently used to eliminate the kinematical variables
from the complementary virtual work principle of the sublaminate/layer model, so that the
resulting equation depends only on the stress functions in the two interior layers (Section
3). Since the elimination of the sublaminate kinematical variables is achieved by using the
equilibrium equations of the sublaminates, no additional requirements need be further
imposed on the stress functions to ensure its statical admissibility in the variational problem
of the sublaminate/layer model.

In Section 4, polynomial expansions of the stress functions in the two interior layers
are introduced and the complementary virtual work princple is used to derive the Euler-
Lagrange equations governing the coefficient functions of the expansions. The derivation
requires complex algebraic manipulations involving the geometrical, elastic and loading
parameters. This task is achieved once and for all by using the symbolic algebraic program
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MACSYMA (1988). The results are incorporated in a computer program for formulating
and solving the eigenvalue problem and obtaining the interlaminar stresses.

In Section 5, two different sublaminate/layer models are applied to the classical problem
of a symmetric, four-layer, cross-ply or +45° angle-ply laminate. The interlaminar stresses
on the highest interface associated with each one of the three distinct cases of strain loads
(axial extension, bending and twisting) are compared for the two models, and also compared
with the previous variational solutions of the four-layer laminate [Yin (1991), where no
sublaminate was used]. Reasonable agreement among the results of all three analytical
models is found, especially for the dominant component of the interlaminar stress. Finally,
we apply the sublaminate/layer model to two types of symmetric, eight-layer, quasi-isotropic
laminates, which have been previously studied by Wang and Crossman (1977) using the
finite element method for the case of axial strain load only. In the present analysis, inter-
laminar stresses associated with all three distinct strain loads are determined on the various
interfaces.

2. THE SUBLAMINATE/LAYER MODEL

A sublaminate/layer model of a multi-layered laminate is shown in Fig. 1. The four
parts of this model (the lower sublaminate, the lower and upper interior layers, and the
upper sublaminate) are separated by three consecutive interfaces having the thickness
coordinates y,, y, and y,, where the coordinate plane, y = 0, is chosen to be the middle
plane between the upper and lower surfaces of the laminate, y = +1¢/2.

The elastic properties of the two interior layers immediately below and above the
interface y = y, may be characterized by their respective elastic compliance matrices, i.e.
[a;] and [a;]. In the lower layer, one has

KA [ V/a,,  —anjan, —ap/an 0 0 —ag/an] (&)
&x a12/a,, @22 gzs 0 0 Ezs Ox
&, | ais/an Bas B33 0 0 Bse gy 1
= >
170 0 0 0 B B 0 | @
yyz 0 0 0 E45 ESS O Tyz
LVxzJ | @16/a1; é26 1_336 0 0 EGG 4 LTy J
where
éij =a;—ayay/a,, forij#1. 0)]

Similar relations involving the compliance coefficients [d;] and [f] are valid in the upper
layer, where

B, =a;—aa,la,, forij+#]l. 3)

We introduce a pair of stress functions F(x, y) and ¥(x,y) in the two interior layers
such that (where the subscripts following a comma indicate partial differentiation with
respect to the coordinate variables)

ST T T T
Y vs

Fig. 1. Sublaminate/layer model for determining the interlaminar stresses on the interface y = ¥
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Gy = E)’,V’ oy = Exxa Txy = —F,xys Tyr = \P,ya Ty, = “\Pv (4)
The preceding expressions ensure that the stresses in each layer satisfy the equilibrium
equations identically. One may choose the stress functions in the two layers in such a way
that ¥, F and F, vanish on the free edges. One may further require, without loss of
generality, that ¥, Fand F, are continuous across the interface of these layers (Yin, 1991).
The values of 'V, F and F, on the interfaces y = y; will be denoted, respectively by ¥,(x),
Fi(x) and G;(x) (i=1,2,3).
The displacements of the lower layer are given by (Lekhnitskii, 1963)

u(x,y,z) = —Opz+ U(x, ) +w:z— w3y +u,
0(x,,2) = 1,222+ Oxz+ V(x, p) + 03x— 0,2+ 1,
w(x,»,2) = (eo—KY)z+ W(x, y) + @1y — 02X+ 0. (5)

Similar expressions may be written for the displacements of the upper layer. In order to
ensure the continuity of the displacements across the interface y = y,, the displacement
functions of the two layers must contain the same constants ¢, k, and ®, which characterize,
respectively, the strain loads of extension, bending and twisting.

For the sake of simplicity we shall consider the upper and lower sublaminates as
classical laminated plates whose elastic properties are characterized by the extensional,
bending and coupling stiffness matrices, i.e. [4,], [D;] and [B;] for the lower sublaminate
and [4,), [B;] and [D,] for the upper sublaminate. The use of more refined (higher order)
sublaminate models may yield improved analytical results for the interlaminar stresses in
comparison with the present solutions. However, since the free edge condition implies that
the integral of 7,, across the thickness of each layer vanishes at the free edge, and the
integral across the entire laminate thickness vanishes for all x, transverse shear effect is
expected to be of minor importance in the present problem.

Let H =t/2+y, denote the thickness of the lower sublaminate. Then the in-plane
strains €,(,), &(;) and 7, on the interface y = y, are related to the same strains on the
middle plane of the lower sublaminate, ¢?, &2 = &+ k.(t— H)/2 and y,, according to

Sx(l) = Eg_'_ctl_{/z’ YXz(l) = 222_91:[
&) =§?—Kz1;1/2=30+(t/2“]_'_1)’€:» (6)
where x, is the curvature of the lower sublaminate in the x-direction.

Let N,, Q. and M, denote, respectively, the normal force, the shearing force (in the
thickness direction) and the bending moment acting on a cross section (x = constant) of
the lower sublaminate. Let N, denote the in-plane shearing force in the sublaminate. These
stress and moment resultants satisfy the following equilibrium equations

]_Vx,x + Txy( n = 0, ]_sz,x + Tyz( 1) = 09
Qx,x+ay(l) = Os Mx,x+Qx_rxy'(l)I:I/2 = 07 (7)

where the interlaminar stresses 6,1, 7.,y and 1,1, on the lower interface may be expressed
in terms of the derivatives of F,(x), G,(x) and ¥ ,(x)

Oy = Fi, 10, =-G, 1.0 = -¥.

Integrating the preceding equations with respect to the coordinate x, and using the free
edge condition, one obtains the following results

]_YX=G1’ ]_sz'—:\Pl, Qx':'_ /1’ M)r:F]_GlI_{/z (8)

Now the elastic constitutive equations of the lower sublaminate have the form
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N, Ay A A4i gf B:i Biy By || K-
Nt =461 A6z dss Eg +|Bsi Ber Bss |yKx(- )
M, By By By 22: Dyy Dy, Dy 20

Eliminating N,, N,, and M, from the last two sets of equations, and using eqn (6) to express
&, £ and %, in terms of &,(1), Yx:(1y and &, we obtain a system of linear algebraic equations
for ax(])a sz(l) and 'Sx

Ay, Axe B+ AnH[2| (& G,
Ars Ags Brs+ArHI2| Vi) = ¥,
B,, B,s D,,+ByH|2 Ky F,—G,H[2

A2 B+ An(—H)2 By+d4:6H/2| [ &
—| 416 Bietdis(t—H)2 Bes+AseH2| k. ¢ (10)
B, D;+B,(t—H)/2 D+ B,cH21 20

This system of equations may be easily solved to obtain &, 7.1y and «, in terms of F),
G, ¥, and the strain load parameters ¢, k, and ©.

Similarly, using the equilibrium equations and the elastic constitutive equations of the
upper sublaminate, one may obtain the following system of equations which determines
Ex(3)> Vxz(3 and K, in terms of F;, G, W; and the strain load parameters &, ., and @

l‘izz r‘izs 322—22217/2 €x(3) G;
126 Zse st—/;zsﬁ/z Y3 = — ¥,
B,, By, D,,—BjH/2 K, F;+G;H/2

A, B,—A,,(t—H)2 By—A4,H2] (¢
—| A6 Bis—Ai(t—H)2 Be—AgH2 [k, p, (11)
B\, D,,—B,,(t—H1)2 D,,—B,cA/2] 120

where H = (¢/2) —y; denotes the thickness of the upper sublaminate. We now substitute
the solutions of the preceding two systems of equations into the integrals

J(sx( 0G| +7:.1y0¥ ) +K,0F)) dx— J(Ex(s)aGs + Vx5 0¥ 3 + K, 6F;) dx.

The results contribute additional terms to the Euler-Lagrange equations associated with

the complementary virtual work principle [i.e. the last two integrals of eqn (14a) in the next
section].

3. THE COMPLEMENTARY VIRTUAL WORK PRINCIPLE AND THE VARIATIONAL EQUATION

The theoretical analysis of applying the complementary virtual work principle to the
sublaminate/layer model differs in certain aspects from the derivation of the variational
equations for a pure layer model [as given by eqns (15a, b) of Yin (1991)]. We consider a
segment of the laminate of unit length in the axial direction, 0 < z < 1. Equation (12) of
Yin (1991), when applied to the two interior layers of the sublaminate/layer model, yields
the following expression for the total strain energy of the two layers [instead of eqn (13) of
Yin (1991))]
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Y J‘je,jér,—j dxdy-Y J‘J(Auérﬂ + Avét,. +Awda.) dx dy

- j (uot,, +wot,. +vdo,) dx+ J (uot,, +wot,.+vdg,)dx =0, (12)
upperinterface ’ ’

lower interface
where the symbol X indicates summation over the two interior layers and where

Au=—0Oy+w,, Av=k/24+0Ox—w,, Aw=c¢y—)K.
0t,. =0¥,, dr,.= 0¥,
00. = —(a20F,,+a30F .. +a,s0¥ ,)/a,,. (13)

In the last expression, a;; represents 4; in the upper layer and g;; in the lower layer; in the
expressions for Au and Av, w, and w, represent @, and @, in the upper layer and @, and
w, in the lower layer.

The two line integrals in eqn (12) contribute the following

— J{—u;éGg—w35‘P’+v35 51 dx+ J{—uléG’, —w 0¥ +v,0F} dx
= = J{SxU)aG_z+(Vx:(3)—a_)2)5\P3+'3x5Fw} dx
+ j{8x<1)5G1 +(Vx.-(1) _@2)5T3+'_(x5F1} dx,

where u;, v; and w; (i = 1,3) denote the displacement functions on the ith interface. After
performing integration by parts on the second set of double integrals in eqn (12), making
use of eqn (13) and the homogeneous boundary conditions of F;, G;, \V;, F; and G| at
x= +a (i = 1,2,3), and combining the results with the preceding expressions for the line
integrals along the interfaces, one obtains from eqn (12) the following variational equation

y [f_fsijaaij dx dy+ JJ(K"Q”’MI | —20)6% dx dy]
—(gg—y2k.) {((312/&” —dyl/an) J(SGZ dx+(a,6/@11 —ais/a,) Jé‘l’z dx}
+(gg—yak.) {(dlz/dl 1) j5G3 dx+(a,e/a,) J‘é‘h dx}
—(&o—y1K2) {(‘112/‘_111) j5G1 dx+(ai6/ai1) J(N’n dx}
— K, (@16/a11—aye/a) JéFz dx+ux.(@e/d1) f5F3 dx—u.(aie/ai) JéFl dx
+ J(ax(,)éGl +Ve1y0¥ ) +KOF) dx— J(sx(g)éGg-sz(z)(S‘I’} +Kk,6F,)dx =0, (14a)

where



Interlaminar stress analysis of composite laminates 1555

z J‘J‘Sijéaij dx dy = Z JJ {Eyy H Exx s T Exy s T lP,x H lP,y}

B By O 0 B 5F.yy
Bz Bss O 0 Bis oF .,

X 0 0 Bus Bas O —0F,, » dxdy. (14b)
0 0 Bas Bss O —o¥,
Brs B O 0 Bes oY,

In eqn (14a), only the last two line integrals depend on the stiffness matrices of the
sublaminates through the expressions of eqns (10) and (11) for .1y, Vxx1ys Kxs €x(3)» Vxz(3ps
and £, in terms of F|, G,, ¥,, F;, G5, ¥, and the strain load parameters g, x, and ©. All
other terms of the variational equation are contributed by the two interior layers, and
therefore depend only on the strain load and the elastic properties of the interior layers.

4. POLYNOMIAL APPROXIMATIONS OF THE STRESS FUNCTIONS

If the stress functions F and ¥ in the lower layer are approximated, respectively, by
cubic and quadratic functions of the normalized thickness coordinate s = (y—y,)/(y,— ¥ 1),
then

F(x,m) = (1=30"+2n°)F,(x) + (3n° = 2n°) F,(x)
+ (=207 +1°)hG  (X) + (—n* +1>)hG () (15)

¥(x,n) = Q=0 )¥,(x) +n"¥2(x) + (1 —n")hH (x), (16)

where h = y,—y, is the thickness of the lower layer and where H,(x) is the value of
J0¥/0y =¥ ,/hon the interface y = y,. Analogous polynomial expansions may be given for
the stress functions F and W in the upper layer in terms of the normalized thickness
coordinate 7 = (y—y,)/(y3—¥>), in which the coefficient functions F;, G;, ¥; and H, are
replaced, respectively, by F, 1, G;,1, ¥;,; and H,,, (where H, is the value of 0¥/dy on
the interface y = y,).

Substituting the preceding polynomial expansions of the stress functions into eqgns
(14a) and (14b), and following the procedure described in Section 7 of Yin (1991), we
obtain a system of ordinary differential equations with constant coefficients

(IW] d*/dx*+ [V] d*/dx? + [U{X} = {b}, (17)

where [W], [V] and [U] are 11 x 11 symmetric matrices and the nonzero elements of [W]

appear only in the 6 x 6 submatrix at the upper left corner. The elements of the column

vector {X} are the 11 unknown functions F,, F,, F3, Gy, G5, G5, ¥, ¥,, ¥,, H, and H,,
which satisfy the following homogeneous boundary conditions at the free edges
Fi(ta) = G(ta) =Y¥(ta) = Fi(£a) =G(xa)=0, i=123

HY(+a) = H?(+a) = 0. (18)

The first two symmetric matrices (W] and [V] depend only on the thicknesses and

anisotropic elastic properties of the two interior layers, while the third matrix [U] and the

constant vector {b} depend also on the thicknesses and the stiffness properties of the
sublaminates. The characteristic equation associated with eqn (17)

Determinant ([W]4*+[V]A*+[U]) = 0 (19

is a polynomial equation of degree 17 in A%. Hence there are 17 pairs of real and complex

SAS 31:11-E
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eigenvalues 4. Each pair consists of eigenvalues which differ only in algebraic sign. A
particular solution of the differential equation (17) is

{X}, =[U]" *{b}

which depends on the three strain load parameters ¢, k., and ©® through the constant
vector {b}. The unique solution of the eigenvalue problem may be obtained by taking an
appropriate linear combination of the eigenfunctions with the preceding particular solution
so that the 34 homogeneous boundary conditions of eqn (18) are all satisfied.

If the interface under consideration, y = y,, is the lowest interface in the laminate, then
the sublaminate/layer model has no lower sublaminate and the functions F,(x), G,(x) and
¥ ,(x) vanish identically. The dimension of the vectors {X} and {b} is diminished from 11
to 8 and the characteristic equation, eqn (19), reduces to a polynomial equation of degree
12 in A% A similar situation occurs when y = y, is the highest interface of the laminate.

Another degenerate case is associated with a cross-ply laminate having the material
axes parallel and perpendicular to the free edges. In this case the solution space of the
eigenvalue problem decomposes orthogonally into two subspaces associated, respectively,
with the stress functions F and ¥. The first subspace determines the solutions under axial
extension ¢, and bending k., while the second subspace determines the solutions under the
twisting deformation ©.

The algebraic manipulations leading from the variational equation, eqn (14), and the
polynomial approximations, eqns (15) and (16), to the system of ordinary differential
equations, eqn (17), is exceedingly laborious and cannot be achieved without using computer
algebra. The symbolic algebraic program MACSYMA is used to obtain the explicit
expressions of all elements of the symmetric matrices [W], [V] and [U] in terms of the
geometry and stiffness of the interior layers and the sublaminates, and to obtain the vector
{b} in terms of these data and the strain load parameters ¢, x, and ©. These explicit
expressions form the basis of a FORTRAN program which evaluates the symmetric
matrices [W], [V] and [U] and the vector {b} by using the input data concerning the material
properties, the thicknesses and the orientation angles of the successive layers, and the width
of the laminated strip. A subsequent segment of the FORTRAN program then computes
all eigenvalues of the characteristic equation, eqn (19), and the associated eigenvectors.
Finally, the solutions for the unknown functions {X} are obtained for each one of the three
loading cases by suitably combining the eigenfunctions with the relevant particular solution
(Yin, 1990).

The FORTRAN program has built-in subroutines to generate the elastic compliance
matrices ([a;;] and [f;]) of the interior layers and the stiffness matrices ([4,], [B;;] and [D;])
of the sublaminates. Furthermore, the two degenerate cases—one corresponding to an
orthogonally decomposable solution space (cross-ply laminates) and the other concerning
the absence of one sublaminate—have been included within the capability of the program.
Thus, although the symbolic algebra leading to the development of the FORTRAN program
is exceedingly complex, the resulting program is extremely easy to use because its implemen-
tation does not involve tedious geometrical modeling tasks (such as mesh generation in a
finite element analysis). The program is applicable to a laminate composed of any number
of differently oriented plies with arbitrary orthotropic elastic properties. A single execution
of the program for evaluating the interlaminar stresses on a particular interface in a multi-
layer laminate takes only seconds on a 386 or 486 personal computer. The reliability and
accuracy of the program are demonstrated in the following section by the solutions for
symmetric, four-layer, cross-ply, and angle-ply laminates.

5. ANALYTICAL RESULTS AND VALIDATION

The classical problems of symmetric, four-layer, cross-ply, and angle-ply laminates
have been extensively studied and many numerical solutions of the interlaminar stresses
have been presented by various authors for the particular case of the axial strain load. The
interlaminar stresses determined by the stress-function-based variational method (Yin,
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(a) Four-layer model
[ ]

(b) Sublaminate/layer model 1

— ]

IO
(c) Sublaminateflayer model 2

Fig. 2. Three analytical models of a four-layer laminate.

1991), using cubic polynomial expansions for F and quadratic expansions for ¥, were found
to be in reasonable agreement with some of the most refined finite-element solutions in the
existing literature. In the present work, we apply the sublaminate/layer approach to the
same four-layer laminates and compare the resulting interlaminar stresses for the axial
strain and twisting loads with the corresponding variational solutions based on a pure layer
model.

We consider four-layer laminates made of identical unidirectional plies whose ortho-
tropic elastic moduli are as given in Wang and Crossman (1977). The distance between the
free edges is 16 times the ply thickness, i.e. 2a = 164, In addition to the four-layer analytical
model [used previously in Yin (1991)], two sublaminate/layer models may be used to
calculate the interlaminar stresses across the highest interface y = 4. In sublaminate/layer
model 1 (SL1), stress functions are introduced in the two upper layers, while the two lower
layers are considered as the constituent layers of the lower sublaminate. In sublaminate/layer
model 2 (SL2), the two middle layers of the laminate which have the same ply orientation
is considered as a single layer of thickness 2/ and the lowest layer of the laminate is taken
to be a single-layer sublaminate. In both models there is no upper sublaminate. All three
analytical models are shown in Fig. 2.

For the symmetric angle-ply laminate ([45/—45],) under a unit axial strain load,
&o = 1, the results for the normal and shearing stresses on a cross-section of the laminate,
z = constant, are shown in Fig. 3. The results for the interlaminar stresses on the 45/ —45
interface (y = #) are shown in Fig. 4. In these figures, the origin of the x-coordinate has
been shifted so that the free edges are located at x = 0 and x = 16h. While the results from
all three analytical models are reasonably close, the agreement between the solutions of the
SL.2 model and the four-layer model is especially good except in a short interval adjacent
to the free edge. Significant discrepancies are noticed only in the interlaminar stresses o,
and t,,, which are much smaller in magnitude than the dominant interlaminar stress t,,.

Msi
3.000+
Four—layer model

20004 0 e Model SL1

---------- Model SL2
1.000+ T e S S T
0.000 + + f ; ; + + x/h

o 1 2 3 4 5 6 7 8

Fig. 3. 6., 7, and 7, in a [45/—45], laminate under unit axial strain.
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Fig. 4. Interlaminar stresses in a [45/ —45], laminate under unit axial strain.

Under a strain load characterized by the bending curvature k., the material region
near the interface y =/ is subjected, approximately, to an axial compressive strain
—e¢, = K,h. Hence the interlaminar stresses on that interface are nearly identical to those
produced by a uniform axial strain ¢, = — .k in the laminate. The results obtained from
the present solutions are found to be in good agreement with the finite-element solutions
given recently by Ye (1990).

For the strain load corresponding to a unit twisting deformation, @ = 1/A, the results
for the interlaminar stresses on the 45/ —45 interface are shown in Fig. 5. The results for
the four-layer model and for the SL2 model are exceedingly close, while the interlaminar
shearing stresses t,. and t,, computed by the SL1 model are, in comparison to the above
results, somewhat greater near the free edge and smaller near the center line of the laminate.
This happens because, by combining the two lower layers with significantly different orien-
tation angles (45° and —45°) into a sublaminate and imposing the kinematical assumption
of the classical plate theory (i.e. plane sections of the sublaminate remain plane and
perpendicular to the middle surface), the SL1 model overestimates the stiffness in the regions
adjacent to the free edges where the deviation of the actual deformation of the sublaminate
from the Kirchhoff-Love assumption is more prominent. Figures 4 and 5 show that, for
the {45/—45], laminate under all three types of strain loads (axial strain, bending, and
twisting), the mode III interlaminar stress t,. dominates over the peeling stress o, and the
mode II shearing stress .

As pointed out in Yin (1991), along the interface y = y,, the values of the functions

% —GY% and W, are equal to the resultant forces of the interlaminar stresses o, 7,, and
T,., respectively, over the end interval [0, x] of the interface. These functions indicate the
resultant peeling and (mode [ and mode I1) shearing actions acting across the end segment
of the interface. They are useful measures of the criticality of the interlaminar action.
Figures 6 and 7 show the plots of these functions for the [45/—45], laminate subjected to

S ————— Four—layer model
-3 /
./A Cm e — Model SL1
3
-4, e Model SL2
-5 } ' y + } t * x/h
0 1 2 3 4 5 & Y 8

Fig. 5. Interlaminar stresses in a [45/ —45], laminate under twisting (® = [/h).
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Fig. 6. F, F,and ‘P in a [45/—45], laminate under unit axial strain.

&, =1 and ® = 1/h, respectively. The two plots indicate that, under both types of strain
load, the dominant (mode IIT) shearing action is concentrated in a short interval adjacent
to the free edge, since the function value of ¥, increases rapidly from zero at x = 0 and
approaches the maximum value over a short end interval of length comparable to the
laminate thickness. Furthermore, while the three analytical models yield significantly differ-
ent pointwise values of the interlaminar stresses in an immediate vicinity of the free edge
(where the interlaminar stresses may approach infinite values according to the singularity
solution of the elasticity theory), they yield resultant peeling and shearing forces that are
in much better agreement. This suggests that, although a variational method of analysis
using the sublaminate/layer approach may yield poor results for the interlaminar stress
near the free edge, the analysis generally provides accurate results for the resultant forces
over short end segments of the interface—quantities that are especially valuable as measures
of the criticality of interlaminar action because, compared to the pointwise values of the
interlaminar stresses, the stress resultants are less sensitively affected by deviation of the
material behavior from the idealized assumption of linear elasticity.

In the case of cross-ply laminates, the differential equations for the stress functions F
and ¥ are uncoupled. The function ¥ vanishes identically under the axial strain and bending
deformation, while F vanishes identically under the twisting deformation. For two types of
symmetric, four-layer, cross-ply laminates with the stacking sequences [0/90], and [90/0];,
the interlaminar stresses on the interface y = /4 under a unit axial strain load are shown in
Fig. 8 for 6, and in Fig. 9 for 7,,. Figures 10 and 11 show, respectively, the resultant peeling
and shearing forces (F’, and —G*%) acting across end segments of the interface of varying
lengths. Figure 12 shows the interlaminar shearing stress 7,, on the same interface under a
unit twisting deformation. The results are identical for the [0/90], and [90/0], laminates.
Also shown in the figure is the resultant shearing force across a variables end segment [0, x]
of the interface, which is given by the function ¥,. Under both the axial strain load and

Msi
10

O+l .
-‘M F(x)/hz
'''''' e RSN
-2 } + + + ] =—="=4 x/h
¢] 1 2 3 4 5 6 7 8

Fig. 7. F, F, and ¥ in a [45/ —45], laminate under twisting (® = 1/h).
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Fig. 9. 7., on y = h in cross-ply laminates under unit axial strain.
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Fig. 10. F.on y = h in cross-ply laminates under unit axial strain.

the twisting load, the results computed from the four-layer model and two sublaminate/layer
models once again show superior agreement in the resuitant peeling and shearing forces
and less satisfactory agreement in the pointwise values of the interlaminar stresses in an
immediate vicinity of the free edge.

Wang and Crossman (1977) calculated the interlaminar stresses in two types of sym-
metric, eight-layer, quasi-isotropic laminates ([45/—45/0/90], and [90/0/—45/45],) under
an axial strain load by using the finite element method. In the present work, variational
solutions for the interlaminar stresses in the same laminates are obtained by repeated use
of the sublaminate/layer model (one model for each interface). Each solution step yields
the interlaminar stresses on a particular interface for all three cases of the strain load.
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Fig. 13. o, in a [45/—45/0/90], laminate under unit axial strain.

For the [45/ —45/0/90], laminate under a unit axial strain load, the interlaminar stresses
on the various interfaces are shown in Figs 13-15. The present results are in reasonable
agreement with Wang and Crossman’s finite element solutions as shown in their Figs 11
and 12, except in short intervals of the interfaces adjacent to the free edge. Notice that a
different coordinate system was used by Wang and Crossman (1977). In Figs 13-15, we
show the interlaminar stresses across the right half of the interface so that the present results
for 1,,, 7,, and o,, respectively, may be easily compared with their results for 7,, (shown
for the interface y = k only), 1., (for the interface y = 34) and o, (for all four interfaces).

For the [90/0/—45/45], laminate under the axial strain load, and for both types of
quasi-isotropic laminates subjected to bending and twisting deformation, the interlaminar
stresses on the successive interfaces have also been obtained (Yin, 1992a; see Figs 14, 16
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Fig. 15. 7,, in a [45/—45/0/90], laminate under unit axial strain.

and 18-22 of that paper). It was found that the interlaminar stresses produced by a unit
twisting load (® = 1/k) may be an order of magnitude greater than those produced by a
unit axial strain or a bending deformation (x, = 1/h). However, for a laminated strip with
the thickness considerably smaller than the width, the total strain energy associated with a
unit twisting deformation also far exceeds the strain energies under the unit axial strain or
unit bending deformation.

6. SUMMARY AND CONCLUDING REMARKS

A sublaminate/layer model is used to investigate the interlaminar stresses near the free
edge of a multi-layered laminate subjected to three distinct cases of strain loads, i.e. axial
extension, bending and twisting. Using the stiffness matrices and the equilibrium equations
of the sublaminates, the kinematical variables of the sublaminates are expressed in terms
of the Lekhnitskii stress functions in the two interior layers. This yields a variational
problem for the sublaminate/layer model in a purely stress formulation, based on the
principle of complementary virtual work. The stress functions in each layer are expanded
in truncated power series of the thickness coordinate, and the coeflicient functions of the
expansion are determined from the solution of an eigenvalue problem. The sublaminate/
layer approach limits the dimension of the eigenvalue problem to a fixed number irrespective
of the numbers of layers in the two sublaminates, so that reasonably accurate solutions of
the interlaminar stresses can be obtained with little computational effort. While the solutions
satisfy strain compatibility and interfacial continuity of displacements only in the sense of
the mean, they satisfy exactly the equilibrium equations of the layers and the sublaminates,
traction-free boundary conditions at the free edge, and continuity of interlaminar stresses
across the interface.
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The prominent features of the present analysis method are its generality and efficiency.
The method is applicable to a laminate composed of any number of layers with arbitrary
orientations and anisotropic (linearly) elastic properties. A FORTRAN program is
developed for implementing the analysis on personal computers. Execution of the program
requires only the numerical data of the elastic moduli, orientation angles, and thicknesses
of all layers and the width of the laminated strip. No geometrical modeling task such as
mesh generation is needed. For a given interface in a laminate, interlaminar stresses for all
three cases of strain load—axial extension, bending, and twisting—are computed in the
same eigenfunction analysis. Thermal stress analysis for a given temperature load (which
may depend on the thickness coordinate) can also be performed using the procedure
described in Yin (1993). The program is suitable for repeated use in parametric studies,
design and optimization of composite laminates to control interlaminar stresses under
various states of loading.

The sublaminate/layer method is applied to symmetric, four-layer, cross-ply and +45°
angle-ply laminates and to two types of symmetric, eight-layer quasi-isotropic laminates.
The present solutions are compared with the existing finite element solutions in the literature
for the special case of the axial strain load, and to previous stress-function-based variational
solutions without the use of sublaminates. The agreement is found to be practically accept-
able, particularly for the dominant component of the interlaminar stress. Furthermore, the
different solutions show better agreement in the resultant forces of the interlaminar peeling
and shearing stresses over end segments of the interface. Further improvement in the
accuracy of the variational solutions may be achieved by using higher-degree polynomial
expansions of the stress functions in the two interior layers in conjunction with a more
refined laminated plate theory for the sublaminates. Alternatively, the present variational
method may be implemented twice to obtain preliminary solutions for the interlaminar
stress on the (i— 1)th and (7 + 1)th interfaces. In the segments of the interfaces immediately
adjacent to the free edge, these solutions may deviate significantly from the corresponding
clasticity solutions in a pointwise sense. However, they are expected to agree closely with
the latter solutions in regard to the various moments

(Jx”a“, dx, Jx"tx_,, dx, and Jx”rys dx, n=0,l,...).

By virtue of Saint Venant’s principle, the variational solutions of the interlaminar stresses
on the (i—1)th and (i+ 1)th interfaces should serve very well as the traction boundary
condittons of a boundary-interface problem inciuding only two layers adjacent to the ith
interface. More accurate solution procedures with the consideration of stress singularity
may be applied subsequently to the two layer problem. This two-step solution scheme
provides a highly efficient procedure for accurate solution of the interlaminar stresses on
the /th interface.

Although the present analysis assumes that the strain and curvature loads ¢, x, and
© are constant in the laminate, this assumption may be weakened to the extent that the
load parameters vary slowly in the plane of the laminate. The intense and localized inter-
laminar stresses near a particular location of the free edge depend mainly on the local values
of the load parameters. For, just as the interlaminar stresses decay rapidly away from the
free edge and affect very little the stress state in the interior region of the laminate, so the
interlaminar stresses near the free edge are not significantly affected by moderate deviations
of the strain and curvature loads from their values at the free edge. This heuristic argument,
relevant to many problems involving stress concentration in narrow boundary regions, is
suggested by Saint Venant’s principle and the reciprocity relations of elasticity.
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